Главная · Эндокринология · Основные группы биологически активных веществ лекарственных растений. Общая характеристика основных групп биологически активных веществ лекарственных растений

Основные группы биологически активных веществ лекарственных растений. Общая характеристика основных групп биологически активных веществ лекарственных растений

Вещества (сокращено - БАВ) - это особые химические вещества, которые обладают при небольшой концентрации высокой активностью к определенным группам организмов (человек, растения, животные, грибы) или к определенным группам клеток. БАВ применяют в медицине и в качестве профилактики болезней, а также для поддержания полноценной жизнедеятельности.

Биологически активные вещества бывают:

1. Алкалоиды - азотсодержащие природы. Как правило, растительного происхождения. Обладают основными свойствами. Нерастворимы в воде, с кислотами образуют различные соли. Обладают хорошей физиологической активностью. В больших дозах - это сильнейшие яды, в малых - лекарства (медикаменты "Атропин", "Папаверин", "Эфедрин").

2. Витамины - особенная группа органических соединений, которые жизненно необходимы животным и человеку для хорошего метаболизма и полноценной жизнедеятельности. Многие из витаминов принимают участие в образовании нужных ферментов, тормозят или ускоряют активность определенных ферментных систем. Также витамины используются как к пище (входят в их состав). Некоторые витамины поступают в организм с пищей, другие образуются микробами в кишечнике, третьи - появляются в результате синтеза из жироподобных веществ под воздействием ультрафиолета. Недостаток витаминов может привести к различным нарушениям в обмене веществ. Болезнь, которая возникла в результате малого поступления витаминов в организм, называют авитаминозом. Недостаток - а чрезмерное количество - гипервитаминоз.

3. Гликозиды - соединения органической природы. Обладают самым разнообразным воздействием. Молекулы гликозидов состоят из двух важных частей: несахаристой (агликона или генина) и сахаристой (гликон). В медицине используют для лечения заболеваний сердца и сосудов, как противомикробное и отхаркивающее средство. Также гликозиды снимают усталость умственную и физическую, дезинфицируют мочевые пути, успокаивают ЦНС, улучшают пищеварение и повышают аппетит.

4. Гликолалкалоиды - биологически активные вещества, родственные гликозидам. Из них можно получить следующие лекарственные препараты: "Кортизон", "Гидрокортизон" и другие.

5. (другое название - таниды) способны осаждать белки, слизи, клеевые вещества, алкалоиды. По этой причины они несовместимы с этими веществами в лекарствах. С белками они образуют альбуминаты (противовоспалительное средство).

6. Масла жирные - это жирных кислот или спирта трехатомного. Некоторые жирные кислоты участвуют в выведение из организма холестерина.

7. Кумарины - это биологически активные вещества, в основе которых лежит изокумарин или кумарин. В эту же группу относят пиранокумарины и фурокумарины. Некоторые кумарины обладают спазмолитическим действием, другие проявляют капилляроукрепляющую активность. Также существуют кумарины противоглистного, мочегонного, курареподобного, противомикробного, обезболивающего и иного действия.

8. Микроэлементы, как и витамины, тоже добавляются в биологически активные пищевые добавки. Они входят в состав витаминов, гормонов, пигментов, ферментов, образуют химические соединения с белками, накапливаются в тканях и органах, в железах эндокринных. Для человека важны следующие микроэлементы: бор, никель, цинк, кобальт, молибден, свинец, фтор, селен, медь, марганец.

Существуют и другие биологически активные вещества: (бывают летучие и нелетучие), пектиновые вещества, пигменты (другое название - красящие вещества), стероиды, каротиноиды, флавоноиды, фитонциды, экдизоны, эфирные масла.

Полисахариды

Понятие. Полисахариды- высокомолекулярные продукты конденсации более пяти моносахаридов и их производных, связанных друг с другом О- гликозидными связями, и образующие линейные или разветвленные цепи. Молекулярная масса полисахаридов колеблется от нескольких тысяч до нескольких миллионов единиц. В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз- D- глюкоза, D- галактоза, L- фруктоза, D-манноза; из пентоз- D- ксилоза, L- арабиноза; из дезоксисахаров- L- рамноза, D- фукоза; из продуктов восстановления D- маннозы- спирт манит; из продуктов окисления моносахаридов- D- глюкуроновая, D- маннуроновая, D- галактуроновая, D-гулуроновая кислоты. Моносахариды и их производные входят в состав полисахаридов в пиранозной, реже фуранозной форме. Образование О- гликозидной связи происходит за счет полуацетального гидроксила одного моносахарида и водопрода гидроксильной группы другого моносахарида.

Классификация. Полисахариды делят на два типа: гомополисахариды (гомополимеры) и гетерополисахариды (гетерополимеры). Гомополисахариды построены из моносахаридных единиц одного типа, а гетерополисахариды- из остатков различных моносахаридов и их производных. Полисахариды можно классифицировать по функции, по происхождению, по кислотности, по характеру скелета.

Биологическая роль. Подвергаясь окислительным превращениям, полисахариды обеспечивают все живые клетки энергией. Они входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма.

Физические свойства. Полисахариды- это большей частью аморфные вещества, нерастворимые в неполярных растворителях и спирте. Растворимость в воде разнообразна: амилоза, гликоген, пектин, агар- агар, слизи растворимы в воде с образованием каллоидных растворов или гелей, а целлюлоза, хитин некоторые камеди в воде нерастворимы.

Химические свойства. Полисахариды подвергаются кислотному и ферментативному гидролизу с образованием моно- или олигосахаридов. Для извлечения полисахаридов из природного сырья используют горячую или холодную воду, растворы кислот или щелочей.

Качественный и количественный анализ. Методы качественного и количественного анализа основаны на физико-химических свойствах полисахаридов. Количественное содержание полисахаридов в растительном сырье, как правило определяют гравиметрическим методом.

Особенности заготовки, сушки, хранения. Собирают лекарственное растительное сырье, содержащее полисахариды, в период максимального накопления действующих веществ. Надземные части растений заготавливают только в сухую погоду. Подземные органы содержащие слизь, обычно не моют, но иногда снимают пробку. Сушка предпочтительна искусственная, при температуре 50-60 С. Хранят сырье в сухом, прохладном (10-15 С) помещении, оберегая от амбарных вредителей. При увлажнении сырье отсыревает, плесневеет, прокисает, темнеет, поражается микроорганизмами.



Формакологичиские свойства . Полисахариды и их производные обладают способностью пролонгировать действия лекарств и иммунологической активностью, оказывают противовоспалительное, обволакивающее и ранозаживляющее действие.

Распространение в природе и применение в медицине. К растительным полисахаридам, или фитополисахаридам, относятся целлюлоза, инулин, крахмал, слизи, камеди, пектиновые вещества.

Целлюлоза (клетчатка)- полисахарид, составляющий основную массу клеточных стенок растений. Молекула клетчатки у разных растений содержит от 1400 до 10 000 остатков глюкозы, которые соединены между собой β- 1,4 гликозидными связями в линейные цепи. В медицине используется вата Gossypium, более чем на 95% состоящая из клетчатки. Вата является исходным материалом для получения коллодия и различных производных целлюлозы, находящих широкое применение в качестве вспомогательных веществ при изготовлении разных лекарственных форм. В технике из целлюлозы производят бумагу, целлофан, сорбенты, взрывчатые вещества и т.д.

Инулин- высокомолекулярный углевод, растворимый в воде; из водных растворов осаждается спиртом. Количество остатков фруктозы, связанных в молекуле инулина гликозидными связями между 1- м и 2- м углеродными атомами, предположительно равно 34. Макромолекулы линейны и оканчиваются α- D- глюкопиранозным остатком. Инулин в больших количествах содержится в подземных органах растений семейства Asteraceae как запасающий полисахарид. Для обнаружения инулина в лекарственном сырье используется реакция Молиша: при нанесении одной капли 20% спиртового раствора α- нафтола и одной капли концентрированной серной кислоты с течением времени появляется розово-фиолетовое окрашивание. Из растений, содержащих инулин, получают D- фруктозу. В настоящее время сырье, богатое инулино, широко используется в составе различных пищевых добавок, применяемых при заболевании диабетом.



Крахмал не является химически индивидуальным веществом. Углеводная часть крахмала состоит из двух полисахаридо: амилозы и амилопектина.

Амилоза представляет собой линейный глюкан, в котором остатки связаны α- глюкозидными связями между 1-м и 4-м углеродными атомами. Амилоза имеет молекулярную массу 32 000- 160 000, легко растворима в воде и дает растворы со сравнительно невысокой вязкостью.

Амилопектин - разветвленный клюкан, в котором остатки глюкозы соединены α- глюкозидными связями не только между 1-м и 4-м, но так же между 1-м и 6-м углеродными атомами. Амилопектин растворяется в воде при нагревании и дает стойкие вязкие растворы. Его молекулярная масса достигает сотен миллионов.

Крахмал подвергается ферментативному и кислотному гидролизу. В качестве промежуточных продуктов при гидролизе крахмала образуются полисахариды разной молекулярной массы- декстрины. В растениях крахмал находится в виде крахмальных зерен разнообразной формы: овальной, сферической, и т.д. размеры зерен колеблются от 0,002 до 0,15 мм. Рост крахмальных зерен происходит путем наложения новых слоев на старые, поэтому они часто имеют слоистую структуру. Характерным свойством крахмала является его способность окрашиваться в синий цвет при добавлении раствора Люголя. В холодной воде крахмал лишь набухает, а при нагревании дает вязкие коллоидные растворы, называемые крахмальным клейстером. Растительным сырьем для производства основных видов крахмала служат зерновки пшеницы, риса, кукурузы, а так же клубни картофеля. Применяют крахмал как наполнитель, а в хирургии- для приготовления неподвижных повязок. Он широко используется в присыпках, мазях, пастах вместе с цинка оксидом, тальком. Внутрь же его применяют как обволакивающее при желудочно-кишечных зоболеваниях.

Камеди - смеси гетерополисахаридов с обязательным участием уроновых кислот. Камеди образуются в результате перерождения клеточных стенок и содержимого клеток сердцевины, сердцевинных лучей и т.д. при этом клетки разрушаются, камеди накапливаются и выступают из естественных трещин или из искусственных надрезов стволов. Они застывают в виде комковатых, ленточных и другой формы образований.

Химический состав камедей очень сложен. По отношению к воде камеди подразделяют на три типа:

1. Арабиновые, хорошо растворимые в воде.

2. Бассориновые, плохо растворимые в воде, но сильно в ней набухающие.

3. Церазиновые, плохо растворимые и мало набухающие в воде.

В формацептической практике камеди используются при приготовлении эмульсий и таблеток.

Слизи - смесь гетеро- и гомополисахаридов. Слизи образуются в результате нормального слизистого перерождения клеточных стенок или клеточного содержимого. При ослизнении клетки не разрушаются и целостность их сохраняется. Слизи – твердые аморфные вещества, хорошо растворимые в воде и нерастворимые в спирте и неполярных растворителях. В медицине слизи используют как противовоспалительные и обволакивающие средства. Кроме того, слизи обладают радиопротекторными и иммунозащитными свойствами.

Пектиновые вещества – высокомолекулярные гетерополисахариды, главным структурным компонентом которых является α- D- галактуроновая кислота. Кроме галактуроновой кислоты в значительно меньших количествах в составе пектиновых веществ присутствуют D- галактоза, L-арабиноза, L- рамноза, и другие нейтральные моносахариды. Пектиновые вещества обычно извлекают из растительного сырья при нагревании раствором фосфорной или другой кислоты; экстракт концентрируют, фильтруют и осаждают пектиновые вещества спиртом. Пектины оказывают противоязвенное действие и являются легким слабительным, а с различными металлами образуют комплексные соединения, которые легко выводятся из организма.

ЛИПИДЫ

Понятие. Жиры и жироподобные вещества, нередко называемые липидами,- этов основном производные высших жирных кислот, спиртов или альдегидов. К простым относят липиды, молекулы которых содержат только остатки жирных кислот либо альдегидов и спиртов, к сложным- содержащие, кроме названных, остатки фосфорной кислоты, моно- или олигосахаридов и др.

По химической структуре большинство растительных жиров представляют собой сложные эфиры трехатомного спирта глицерина и высокомолекулярных жирных кислот- глицериды. В составе растительных масел чаще всего встречаются:

· Из насыщенных кислот- лауриновая (C H COOH), миристиновая (С H COOH), пальмитиновая(C H COOH), стеариновая (С H COOH).

· Из ненасыщенных кислот- олеиновая (C H OHCOOH), рицинолевая (12- оксиолеиновая) (C H OHCOOH),линолевая (C H COOH), линоленовая(C H COOH).

Биологическая роль . Липиды- один из основных компонентов биологичиских мембран клеток. Они также создают энергетический резерв в растениях, являясь запасными питательными веществами. У растений липиды накапливаются главным образом в плодах и семенах.

Физические свойства. Глицериды могут быть твердыми(образованы насыщенными жирными кислотами)- растительные жиры- и жидкими(образованы ненасыщенными кислотами)- растительные жирные масла- веществами. Жиры и жирные масла жирны на ощупь, на бумаге оставляют жирное пятно, не исчезающее при нагревании. Цвет жирных глицеридов может быть белым или желтоватым, реже- оранжево-желтым; жирные масла- прозрачные жидкости. Все глицериды имеют запах слабый, вкус маслянистый. Реакция среды нейтральная. Плотность ниже 1. Глицериды нерастворимы в воде и спирте, хорошо растворимы в неполярных органических расворителях. Они не имеют характерной температуры застывания, плавления и кипения. Глицериды оптически неактивны, за исключением касторового масла, что связано с наличием в нем триглицеролов оксиолеиновой кислоты. Реактив судан III окрашивает жирное масло в оранжевый цвет.

Химические свойства . Глицериды подвергаются гидролизу при участии фермента липазы и повышенной температуры в присутствии воды с образованием глицерина и свободных кислот. При действии щелочей глицериды омыляются с образованием глицерина и калиевых или натриевых солей жирных кислот. Жидкие масла дают реакции насыщения двойных связей. Жиры способны прогоркать, продукты прогоркания обнаруживаются по изменению цвета глицеридов, появлению раздражающего запаха и вкуса, увеличению плотности и растворимости в спирте. Под влиянием кислорода воздуха некоторые жирные масла способны образовывать эластичные пленки.

Качественный и количественный анализ . Подлинность жирных масел определяют по внешнему виду, цвету запаху, вкусу, растворимости, химическим реакциям, которые указаны в нормативных документах на конкретные виды масел. Подлинность и чистоту определяют по физическим и химическим константам. Методы количественного определения жирных масел основаны на их растворимости в неполярных органических растворителях.

Фармакологические свойства . Липиды проявляют слабительное, желчегонное, каппиляроукрепляющее, противоопухлевое, антисклеротическое, антиаритмическое, иммуностимулирующее действие. Они применяются в лечении аллергии, артритов, атеросклероза, болезней верхних дыхательных путей, диабета, желчно- и мочекаменной болезни и других заболеваний. Липиды так же являются источниками ряда жирорастворимых витаминов(A,D,E,F).

Применение в медицине. Жирные масла и жиры входят в состав эмульсий, мазей, пластырей; используются в качестве растворителей для инъекционных растворов камфоры и гормонов. В фармацевтической практике используются жидкие масла- оливковое, миндальное, касторовое, подсолнечное, льняное и масло какао.

ТЕРПЕНОИДЫ

Понятие и классификация . Терпеноиды- обширный класс природных органических соединений с общей формулой(C H), где n ≥ 2. Исходя из теоритического числа единиц изопротена в молекуле, терпеноиды делят на монотерпеноиды, сесквитерпеноиды, дитерпеноиды, тритерпеноиды, тетратерпеноиды и политерпеноиды.

Биологически активные вещества (БАВ), которые содержатся в растениях, обуславливают терапевтическую эффективность лекарственных препаратов, созданных из веществ растительного происхождения. Основные биологически активные вещества лекарственных растений - это алкалоиды, гликозиды, полисахариды, эфирные масла, органические кислоты, антибиотики, кумарины, хиноны, флавоноиды и дубильные вещества.


О том, какие биологически активные вещества, содержащиеся в растениях, оказывают воздействие на организм человека, вы можете узнать из материала на этой странице.

Характеристика биологически активных веществ растительного происхождения

Терапевтическая эффективность лекарственных препаратов из растений обусловлена наличием в них большого и довольно сложного комплекса биологически активных веществ (БАВ). Это химические соединения, которые оказывают на организм человека и животных те или иные воздействия, обеспечивая два процесса - ассимиляцию и диссимиляцию, в основе которых лежит обмен веществ.

Для нормального течения обменных процессов необходимо поддерживать постоянство химического состава и физико-химических свойств внутренней среды организма. Оно зависит от ряда факторов. Важное место занимают биологические активные вещества, поступающие с пищей (витамины, ферменты, минеральные соли, микроэлементы и др.) и осуществляющие гармоническую взаимосвязь и взаимозависимость всех физиологических и биохимических процессов в организме. Регулируя все жизненные функции, роль биологически активных веществ сводится не только к эффективному лечебному, но и профилактическому действию.

В лекарственных растениях идентифицированы и исследованы алкалоиды, гликозиды, полисахариды, эфирные масла, органические кислоты, антибиотики, кумарины, хиноны, флавоноиды, дубильные вещества и др. Химический состав многих растений изучен недостаточно, сведения по их составу постоянно пополняются. Многие лекарственные формы, особенно галеновые препараты, содержат несколько активных веществ одновременно.

Количество биологически активных веществ в растении зависит от его вида, условий произрастания, времени сбора, способа сушки и т.д. При использовании лекарственных растений в лечении ряда заболеваний (пищеварительного тракта и пр.) важно знать растворимость БАВ в таких растворителях, как холодная (горячая) вода и разведенные спирты, которые чаще всего используются для приготовления настоев, отваров, настоек, экстрактов, соков и др. знание растворимости помогает врачу приготовить лекарственную форму из того или иного растения.

Помимо БАВ растений, образующихся в процессе ассимиляции и роста, всегда содержатся сопутствующие соединения, способные оказывать определенное влияние на проявление главного лечебного эффекта, повышать всасывание, ускорять или сокращать сроки вредного воздействия. В растениях имеются и так называемые балластные вещества: клетчатка, пектины, некоторые слизи, волокна и др.

Основные химические группы БАВ лекарственных растений оказывают благотворное воздействие при заболеваниях органов пищеварения. Значение биологически активных веществ трудно переоценить, а их положительное влияние на организм очевидно.

Биологические активные вещества алкалоиды и гликозиды

Алкалоиды - сложные органические азотсодержащие соединения, преимущественно растительного происхождения. Основания алкалоидов, как правило, нерастворимы в воде, с кислотами же образуют хорошо растворимые в воде соли. Из водных растворов алкалоиды осаждаются дубильными веществами, солями тяжелых металлов, йодом, некоторыми другими химическими соединениями, и поэтому несовместимы с ними в лекарствах.

В различных видах растений количество алкалоидов неодинаково и колеблется в зависимости от времени года и места произрастания. На вкус алкалоиды горькие, некоторые из них ядовиты. Богаты алкалоидами растения семейства пасленовых и маковых.

Алкалоиды обладают очень высокой физиологической активностью, и поэтому в малых дозах являются сильнодействующими лекарствами различного действия. Источники биологически активных веществ содержат, как правило, не один, а несколько алкалоидов, часто различного действия, но в количественном отношении преобладает один из них, что обуславливает преимущественный характер эффективности применения лекарственного растения и суммарных препаратов из него.

Гликозиды - органические соединения из растений, обладающие разнообразным действием. Их молекулы состоят из двух частей: не сахаристой - генина (агликона) и сахаристой - гликона. Под влиянием ферментов или при кипячении с разбавленными кислотами гликозиды расщепляются. Гликозиды - обычно бесцветные кристаллические вещества горького вкуса, растворимые в воде и разбавленном этиловом спирте. Различают сердечные, горькие, потогонные гликозиды, сапонины, антрагликозиды, фенологликозиды и др.

Какие биологически активные вещества обладают противовоспалительными свойствами

Дубильные вещества (таниды) - это высокомолекулярные полифенолы, получившие свое название благодаря способности вызывать дубление шкур животных вследствие химического взаимодействия фенольных групп растительного полимера с молекулами коллагена. Они обладают выраженными противовоспалительными свойствами, которые основаны на образовании защитной пленки белка полифенола. Применяются в комплексном лечении инфекционных заболеваний, токсикоинфекциях, бытовых и производственных интоксикациях. Таниды растворимы в воде и спирте, они осаждают слизи, белки, клеевые вещества, алкалоиды, отчего несовместимы с ними в лекарствах. С белками они образуют нерастворимые в воде альбумины, на чем основано их применение в медицине (бактерицидное, противовоспалительное действие). Источником природных дубильных веществ являются древесина дуба, каштана, корневища лапчатки, плоды черники, черемухи и др.

Кумарины - природные соединения, в основе химического строения которых лежит кумарин или изокумарин. Сюда также относят фурокумарины и пиранокумарины. Кумарины характерны в основном для растений семейства зонтичных, рутовых и бобовых, в которых они находятся преимущественно в свободном виде и очень редко в форме гликозидов. Выделены и изучены они в последние десятилетия, причем к настоящему времени известно около 1000 природных кумариновых производных. Большей частью это кристаллические вещества, реже жидкости. Они нерастворимы в воде, растворяются только в органических растворителях, лишены запаха. Сам же кумарин обладает приятным запахом сена.

В зависимости от химического строения кумарины обладают различной физиологической активностью: одни проявляют спазмолитическое действие, другие - противовоспалительное, капилляроукрепляющее, успокаивающее, мочегонное, противоглистное, обезболивающее, противомикробное и иные действия. Некоторые из них стимулируют функции центральной нервной системы, понижают уровень холестерина в крови, препятствуют образованию тромбов в кровеносных сосудах и способствуют их растворению.

БАВ растений: соли, железо, калий, кальций и кобаль

Минеральные соли - основной источник макро-и микроэлементов, необходимых организму. Около половины препаратов, используемых современной медициной, получено либо из растительного сырья, либо из продуктов растительного происхождения. Большую группу лекарственных препаратов составляют естественные комплексы макро- и микроэлементов в виде водных вытяжек (отвары, экстракты и др.). Преимущество данных лекарственных форм состоит в естественном комплексировании и количественном соотношении минеральных веществ, прошедших физиологический контроль. Особенно это важно вследствие многообразия синергических и антагонистических взаимоотношений между отдельными микроэлементами и различными их группировками, а также в связи с недостаточной изученностью биологического действия многих микроэлементов. При недостаточном или избыточном поступлении микроэлементов в организм могут развиваться изменения обменных процессов.

Железо - является основным структурным компонентом гемоглобина крови и гемосодержащих ферментов: каталазы, пероксидазы и др. Дисбаланс этого элемента приводит к развитию тяжелых анемий, дисбактериоза и др. Среди лекарственных растений, накапливающих биологически активное вещество (БАВ) в ощутимых количествах, можно назвать бессмертник, лагохилус, левзею, синюху, сушеницу, марену, яблоки.

Калий - участвует в процессах передачи нервного возбуждения, проведения импульсов по нервным волокнам, что необходимо для нормальной деятельности сердца, сосудов, внутренних органов и пр. Наиболее богаты калием сухофрукты: урюк, изюм, курага, персики, финики, чернослив. Много калия в печеном картофеле, томатах, зелени петрушки, шпинате, брюссельской капусте, черной смородине, фасоли, сельдерее, инжире. дополнительным источником калия могут быть брусника, голубика, ежевика сизая, малина обыкновенная, одуванчик лекарственный, цикорий обыкновенный, черника обыкновенная, шиповник коричный и др.

Кальций - принимает участие в процессах сокращения и расслабления мышц, передачи нервных импульсов, регуляции проницаемости биологических мембран, секреции гормонов. Недостаток этого биологически активного вещества растительного происхождения приводит к судорогам, болезненным ощущениям в мышцах при беге. Со многими плодами и овощами может быть введено значительное количество кальция. Сюда относятся абрикосы, виноград, горох, капуста, зеленый лук, петрушка, салат, слива, шелковица и др. Идеально усваивается кальций в составе баклажанов, свеклы, брюссельской капусты, томатов. Кальций также содержится в бруснике, голубике, кизиле обыкновенном, ряске малой, спорыше, чернике обыкновенной и др.

Кобальт - участвует в обмене жирных кислот и фолиевой кислоты, в составе витамина В12 и процессе кроветворения. Лучшим источником кобальта для коррекции его дисбаланса являются шиповник, сушеница топяная, черемуха обыкновенная, кубышка желтая и др.

БАВ магний и симптомы его дефицита

Магний - является активатором ферментов образования белка. Одна из основных характеристик этого биологически активного вещества - участие в регуляции углеводного и фосфорного обмена, обезвреживании свинца, поступающего в организм в период работы в ряде производств. Поскольку ионы магния регулируют кальций-связывающую способность большинства биологических мембран и конкурируют с кальцием за участки связывания, магний называют физиологическим антагонистом кальция. Дефицит магния (ДМ) в организме может развиваться как при физиологических (физические перегрузки, стресс, беременность и лактация), так и при патологических состояниях (острый инфаркт миокарда и др.).

Симптомы дефицита магния условно разделяют на 4 группы:

1. сердечно-сосудистые (тахикардия, учащение приступов стенокардии, появление аритмий, повышение АД, повышение склонности к тромбообразованию);

2. церебральные (головная боль, головокружение, снижение памяти и концентрации внимания);

3. висцеральные (боли в животе, тошнота, рвота, спазм сфинктера Одди, пилороспазм, спазм бронхов, повышение тонуса матки и эклампсия);

4. мышечно-тонические (мышечные судороги, парастезии и тетания).

Дефицит магния может способствовать прогрессированию атеросклероза (за счет развития дислипидемии). В эксперименте добавление магния к диете с высоким содержанием холестерина предотвращает развитие атеросклероза.

Соединений магния много в зерновых продуктах (крупах, хлебобулочных изделиях), бобовых, бананах, несколько меньше в абрикосах, винограде, петрушке, шпинате. Содержится магний также в бруснике, голубике, ежевике сизой, малине обыкновенной, ряске малой, чернике обыкновенной.

БАВ растений: марганец, медь, молибден и натрий

Марганец - необходим для нормального роста и развития детей. Он принимает участие в усилении гипогликемического эффекта инсулина, снижении содержания глюкозы в крови, повышает гликолитическую активность, утилизирует жиры в организме, противодействует жировой дегенерации печени, снижает уровень общих липидов. Богаты марганцем соя, горох, ржаной хлеб, пшеничные и рисовые отруби, картофель, помидоры и особенно красная свекла.

Медь - в организм человека поступает в основном в составе пищи. С кровью она быстро проникает во все клетки, ткани, органы и так же быстро выделяется из них. Участвует в процессах обмена веществ, в частности в тканевом дыхании, пигментообразовании и т.д. Благоприятное воздействие ее на углеводный обмен проявляется ускорением процесса окисления глюкозы, снижением содержания пировиноградной кислоты, торможением распада гликогена в печени. Микроэлемент повышает невосприимчивость организма к некоторым инфекциям, связывает микробные токсины и усиливает действие антибиотиков. Меди много содержится в яблоках, шпинате, моркови, картофеле, капусте, и др.

Молибден - является кофактором альдегиддегидрогеназы, нитратредуктазы и ксантиноксидазы, имеющих отношение к развитию колитов, язвенной болезни желудка, дисбактериоза и др. Концентрируют молибден багульник, барвинок, горец птичий, жостер, крапива двудомная, мята перечная.

Натрий - участвует в поддержании водно-солевого равновесия. Он содержится почти во всех съедобных растениях. Много натрия в лебеде (мари белой), различных видах щириц, свекле.

Биологически активные вещества никель, селен, фосфор, хром и цинк

Никель - оказывает положительное влияние на ферментативные процессы, окисление глюкозы, ускоряет переход сульфгидрильных групп в дисульфидные, обладает некоторыми гипогликемическими и мочегонными свойствами. Много никеля содержится в гречихе, моркови, салате, термопсисе ланцетовидном, дынном дереве, красавке, пустырнике сердечном и др.

Селен - совместно с витамином Е существенно влияет на образование антител и тем самым увеличивает иммунные силы организма. Он входит в состав простетических групп антиоксидантных ферментов. Механизм антиоксидантного действия Sе-содержащего препарата («Адрузен Цинко») состоит в увеличении скорости ферментативной утилизации липопероксидов в крови. Ценными в терапевтическом отношении являются чистотел, подофилл, земляника, наперстянка, ромашка аптечная, катарантус розовый, шиповник, солодка голая, боярышник, мать-и-мачеха, лимонник китайский, смородина черная, эвкалипт, тыква, укроп, пастернак, родиола розовая и др.

Фосфор - участвует в фосфорокальциевом обмене (костеобразовании), накоплении и усвоении глюкозы в печени. Микроэлемент содержится в растительной пище в небольших количествах. Хорошим его источником являются сухофрукты, бобовые, хлебопродукты, а также лук, петрушка, пастернак, капуста, хрен, салат, морковь, свекла.

Хром - положительно влияет на активность инсулина, препятствует развитию тяжелых сердечно-сосудистых заболеваний (атеросклероза, миокардиодистрофий, ревматизма). Содержат выраженное количество хрома диоскорея японская, пивные дрожжи, лобелия.

Цинк - участвует в кроветворении, усиливает защитные функции организма. К лекарственным растениям, содержащим цинк, можно отнести лапчатку прямостоячую, сушеницу топяную, марену красильную, а из продуктов - пшеничные и рисовые отруби, бобовые, лук, шпинат, грибы.

Биологически активные вещества(БАВ) лекарственных растений

Органические кислоты - являются промежуточными продуктами окисления и гидролиза углеводов, жиров и полипептидов. Они содержатся в свободном состоянии или в виде солей, эфиров. Наиболее широко распространены яблочная, лимонная, щавелевая и др. Они нередко обладают антисептическими (ромашка, ива, таволга), противовоспалительными (подорожник, мать-и-мачеха) свойствами.

Пектиновые вещества - это углеводные полимеры, состоящие из остатков урановых кислот и моносахаридов. С органическими кислотами и сахарами они образуют студневидную массу (желируют). Это свойство широко используется в кондитерской промышленности при производстве мармелада, зефира и пастилы. Пектины практически не перевариваются в пищеварительном тракте, образуют нерастворимые комплексы и выводятся из организма. Эта способность пектинов объясняет и их радиозащитные свойства, что важно для больных, проживающих в зонах с повышенным радиационным фоном. При продолжительном употреблении пектинов происходит интенсивное выведение радионуклидов и тяжелых металлов из организма. Кроме того, пектиновые вещества угнетают гнилостную микрофлору кишечника, тормозят всасывание холестерина и способствуют выведению его из организма. Пектинами богаты плоды клюквы, черной смородины, яблоки и др.

Пигменты - красящие вещества, обуславливающие окраску растений. Зеленая окраска растений объясняется присутствием в них хлорофилла, который принимает участие в фотосинтезе. Кроме того, в состав хлорофилловых зерен входит пигмент ксантофилл желтого цвета, каротиноиды - пигменты темно-красного или оранжевого цвета, а иногда и красный пигмент ликопин.

Для терапии больных имеют значение каротиноиды, которые легко растворимы в хлороформе, бензоле, сероуглероде, жирах, а в спирте и воде практически нерастворимы. Особенно много каротиноидов в хлоропластах моркови, рябины и др. У растений эти вещества играют важную биологическую роль, привлекая насекомых-опылителей, птиц, поедающих мякоть плодов и разносящих семена. Каротиноиды являются провитаминами А.

В слизистой оболочке кишечника каротиноиды превращаются в ретинол, а затем в другие активные формы витамина А и, таким образом, косвенно участвуют в процессах пролиферации и дифференциации клеток, механизме зрения и размножения. Они обладают антиканцерогенными, радиопротекторными, иммуномодулирующими свойствами за счет антиоксидантной активности, т.е. способности связывать активные формы кислорода, образующиеся в процессе перекисного окисления липидов и других органических соединений.

Тритерпеноиды - вещества, по строению и стереохимическим свойствам близкие к стероидам. Несмотря на то, что уже выделено огромное количество тритерпеновых соединений, этот класс химических соединений не может быть отнесен к широко применяемым на практике. В качестве лекарственных средств тритерпены изучаются менее интенсивно, чем стероиды. Перечень тетрациклиновых тритерпеноидов не ограничивается производными из солодки голой. Активными соединениями оказались гликозиды олеаноловой кислоты, гедерагенина и гипсогенина. Известный с древнейших времен женьшень в числе БАВ содержит гликозиды тритерпеноида панаксадиола.

Фитоэкдизоны - вещества гормонального характера, обладающие высокой биологической активностью. Эти вещества, как и гликозиды женьшеня, элеутерококка, родиолы розовой и лигнаны лимонника, оказывают иммуностимулирующее действие, что может косвенно обосновать высокую антистрессовую эффективность препаратов из вышеперечисленных лекарственных растений. Экдизоны также были выявлены и у таких обыкновенных растений как подорожники большой и ланцетный, что позволяет использовать листья растения, а иногда и семена, в сборах трав.

Флавоноиды - фенольные химические соединения, чаще желтого цвета, с выраженными Р-витаминными свойствами. Благодаря их влиянию уменьшается проницаемость и повышается прочность стенок капилляров. Фармакологические свойства флавоноидов, влияющие на сосуды, осуществляются с участием аскорбиновой кислоты. Капилляроукрепляющее действие свойственно различным группам фенольных соединений, но более выражено у катехинов, лейкоантоцианов и антоцианов.

Флавоноиды широко распространены в растительном мире. Особенно богаты ими листья гречихи, цветочные бутоны софоры японской, листья и плоды черной смородины, аронии (черноплодной рябины), черной бузины, рябины обыкновенной, трава зверобоя, плоды облепихи, семена конского каштана, листья крапивы, трава фиалки трехцветной и др.

Летучие ароматные жидкости сложного органического состава. Они синтезируются в растениях и представляют собой терпеноиды. Приятный запах ландыша, жасмина, розы, сирени, мяты, укропа и других растений связан с наличием эфирных масел. Эфирные масла по внешним свойствам похожи на жирные кислоты, хотя по химическому составу ничего общего с ними не имеют. В природе встречается много эфироносов. Содержание эфирных масел у разных видов растений неодинаково. Масла плохо растворяются в воде, но значительно лучше в эфире, хлороформе и этиловом спирте. Эфирные масла нестойки и очень чувствительны к повышению температуры. Поэтому особое внимание следует уделять сбору, сушке и хранению эфиромасличных растений. Некоторые эфирные масла обладают противомикробными (мята, шалфей, береза, полынь, можжевельник), транквилизирующими, седативными (мята, лаванда, укроп, фенхель, кориандр) свойствами.

Растительный организм из простых веществ - воды и углекислого газа под действием солнечного света способен синтезировать разнообразные химические соединения, зачастую весьма сложные по строению. Это так называемые первичные метаболиты, необходимые растениям как строительный и энергетический материал. К ним относятся углеводы, белки и липиды.

Первичные метаболиты, как исходное сырье, вовлекаются в сложный биосинтетический процесс, в результате которого возникают новые, существенно различающиеся по химической структуре и свойствам вещества - вторичные метаболиты. Являясь продуктами синтеза живых организмов, каковыми являются растительные клетки, вторичные метаболиты способны оказывать определенное (положительное или отрицательное) воздействие и на многие жизненные процессы человека и животных.

Разумеется, что при использовании растения с лечебной целью далеко не все содержащиеся в нем химические соединения влияют на развитие терапевтического эффекта. В связи с этим среди биологически активных соединений растительного происхождения принято выделять действующие, сопутствующие и балластные вещества.

Действующие вещества - это соединения, обусловливающие терапевтическую ценность данного вида сырья. В большинстве случаев в растениях они являются вторичными метаболитами, реже - первичными. Их можно разделить на две групы.

1. Действующие вещества, обладающие сильно выраженной фармакологической активностью. Они, чаще всего, в высоких дозах токсичны и могут вызывать негативные побочные явления, а эффект проявляется в очень широких пределах лечебных доз. Эта группа, как правило, представлена биогенетически родственными химическими соединениями, относящихся к одному классу. Яркими представителями являются многие алкалоиды и сердечные гликозиды. Лекарственное сырье, содержащее подобные биологически активные вещества, наиболее часто используется для производства промышленных препаратов.

2. Действующие вещества, обладающие более слабой фармакологической активностью. Они нередко представлены в одном растении различными химическими соединениями, относящимися к разным классам. Например, почти каждое растение содержит витамины, флавоноиды, дубильные вещества и др. В этом случае, как правило, достигаемый терапевтический результат является комплексным, зависящим от суммы всех действующих веществ, содержащихся в растительном сырье. Фармакологический результат таких соединений чаще всего проявляется при применении относительно высоких доз и, особенно, при длительном приеме. Побочные эффекты, как и случаи отравления, довольно редки. Из растительного сырья, содержащего эту группу, получают как экстемпоральные лекарственные формы, так и промышленные препараты.


Сопутствующими веществами называют вещества растительного происхождения, обладающие определенной фармакологической активностью, но непосредственно не влияющие на достижение конечного терапевтического результата. Как правило к ним относятся продукты первичного и (или) вторичного синтеза, содержащихся в лекарственном растении наряду с действующими веществами.

Присутствие сопутствующих веществ в сырье может быть желательно, а может быть и не желательно.

В первом случае их роль сводится к ускорению или улучшению эффекта действующих веществ. Например, сапонины, часто встречающиеся в растениях, содержащих сердечные гликозиды, ускоряют всасывание последних в кишечнике, обеспечивая тем самым более быстрый терапевтический эффект; аскорбиновая кислота потенцирует действие флавоноидов, регулирующих сосудистую проницаемость и т.д.

Во втором случае эти вещества могут вызвать негативные явления при лечении. В частности, смолы, сопутствующие антраценпроизводным, вызывают болевые ощущения в кишечнике и тошноту. Дубильные вещества могут препятствовать качественному приготовлению экстемпоральных лекарственных форм. От таких сопутствующих веществ, как правило, стремятся освободиться.

Балластные вещества в растениях представлены преимущественно продуктами первичного синтеза и, наиболее часто, производными углеводов.В достижении терапевтического эффекта их роль не значительна или сводится к нулю.

Следует отметить, что резкой границы между приведенными группами нет, и это деление в какой-то мере условно, поскольку одну и ту же группу веществ иной раз относят к действующим, другой - к сопутствующим, а третий - к балластным (например, клетчатка, крахмал и др.)..

Исходя из принципов химической классификации среди биологически активных веществ лекарственных растений в настоящее время можно выделить следующие, наиболее важные в лечебном плане, группы соединений.

1. Алкалоиды - большая группа природных азотсодержащих соединений основного характера. Часто обладают сильным фармакологическим действием и терапевтические дозы многих алкалоидов близки к токсическим или же связаны с побочными эффектами. По некоторым данным, число выделенных из растений алкалоидов с установленной структурой в настоящее время составляет около 10 000. В то же время в медицинской практике нашло применение только лишь около 80 алкалоидов. Преимущественно они используются в чистом виде для промышленного производства фармпрепаратов, но некоторые алкалоидсодержащие растения применяются и для получения экстемпоральных лекарственных форм.

В связи с чрезвычайно разнообразным химическим строением этой группы биологически активных веществ, фармакологические свойства алкалоидов настолько обширны, что невозможно перечислить их детально. В частности, это гипо- или гипертензивные эффекты, седативное действие на центральную нервную систему, сосудосуживающее или сосудорасширяющее влияние и т. д. Важно помнить, что большинство алкалоидов относится к сильнодействующим, ядовитым и наркотическим средствам, поэтому применение растений, их содержащих, требует внимания, осторожности и согласования с врачом.

2. Терпеноиды - обширная группа органических соединений растительного происхождения, объединяемая общими путями биосинтеза. Исходя из особенностей химической структуры внутри этой группы выделяют:

- эфирные масла - летучие жидкие смеси органических веществ, вырабатываемые растениями и обусловливающие их запах. Число компонентов в составе одного эфирного масла может достигать сотни и более. Соединения, составляющие эфирное масло, могут существовать в свободном виде или в виде гликозидов (т.е. соединений, связанных гликозидной связью с сахарным компонентом). В номенклатуре использующихся с лечебной целью лекарственных растений, эфиромасличные растения занимают самое значительное место. Их применение весьма разнообразно. Можно отметить некоторую закономерность в проявлении фармакологических свойств. Среди растений этой группы выделяются следующие подгруппы: а). растения, обладающие противовоспалительной, антимикробной и противовирусной активностью; б). разжижающие мокроту и обладающие отхаркивающим действием; в). оказывающие спазмолитический и сосудорасширяющий эффекты; г). стимулирующие деятельность органов пищеварения; д). проявляющие аналгезирующий и раздражающий эффекты.

- сердечные гликозиды - соединения со сложной и весьма лабильной химической структурой, состоящей из стероидного скелета, лактонного кольца и углеводной части. Сердечные гликозиды оказывают выраженный кардиотонический эффект - увеличивают силу и уменьшают частоту сердечных сокращений, улучшают тканевой обмен сердечной мышцы. Пока не найдены равноценные синтетические заменители этих уникальных лекарственных веществ, поэтому растения являются единственным источником их получения для медицинских целей. Растительное сырье, содержащее сердечные гликозиды, используется преимущественно для производства промышленных препаратов, но иногда из него готовят настои или настойки. В этом случае следует помнить, что сердечные гликозиды в высоких дозах являются сердечным ядом, и их использование без рекомендации врача абсолютно противопоказано.

- сапонины (стероидные и тритерпеновые) - вещества, обладающие специфическими свойствами: поверхностной активностью и способностью вызывать гемолиз эритроцитов. Сапонинсодержащие растения обладают немногочисленными, но уникальными фармакологическими эффектами. Для растений, содержащих стероидные сапонины, характерно антисклеротическое действие. У тритерпеновых сапонинов более широкий спектр фармакологических эффектов. Они обладают выраженным отхаркивающим действием, усиливая секрецию бронхиальных желез, разжижая мокроту и понижая ее вязкость, имеют тонизирующее и адаптогенное действие. Некоторые из них (например, сапонины солодки) при попадании в организм превращаются в аналоги гормонов коркового слоя надпочечников, оказывая тем самым выраженный противовоспалительный, иммуностимулирующий и гормонсберегающий эффект.

- иридоиды (горькие гликозиды) – вещества гликозидной природы, агликоном которых являются производные циклопентаноидных монотерпенов. Это сравнительно немногочисленная группа. Ее основной фармакологический эффект сводится к рефлекторному или местному усилению деятельности органов пищеварения. При этом повышается аппетит, увеличивается секреция желудочного сока, улучшается желчеотделение, усиливается перистальтика кишечника.

3. Фенольные соединения - вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эта группа биологически активных веществ, как и предыдущая, объединяется по биогенетическому принципу и включает в себя:

- простые фенолы, фенолокислоты, фенолоспирты . Ассортимент лекарственного растительного сырья, содержащего эти соединения в качестве основных действующих веществ, весьма не велик. Большинство из них - типичные сопутствующие вещества, обеспечивающие суммарный эффект растительных препаратов. В то же время следует выделить группу лекарственных растений, содержащих фенологликозиды, обладающих выраженным антисептическим и диуретическим действием.

- кумарины и хромоны - соединения, в основе строения которых лежит бензо-a-пирон. Растения, содержащие вещества этой группы, в большинстве своем используются для промышленного производства лекарственных препаратов и обладают спазмолитической, фотосенсибилизирующей, антикоагулянтной и, реже, Р-витаминной активностью.

- флавоноиды - соединения, являющиеся производными флавана или флавона (бензо-g-пирона). Растения, содержащие флавоноиды в качестве действующих веществ, образуют довольно обширную группу, и представлены преимущественно сырьем аптечного ассортимента. Как правило, они сочетают в себе низкую токсичность с достаточно высоким избирательным терапевтическим действием. Прежде всего это выраженная Р-витаминная, спазмолитическая, гипотензивная, желчегонная, кровоостанавливающая и диуретическая активность.

- лигнаны - природные фенольные вещества, производные димеров фенилпропанового ряда. Лигнаны довольно широко распространены в растительном мире и многие из них обладают весьма ценными фармакологическими свойствами - противоопухолевыми, противомикробными, стимулирующими и адаптогенными.

- дубильные вещества - высокомолекулярные растительные многоядерные фенольные соединения, обладающие вяжущим вкусом. Они подразделяются на гидролизуемые (в условиях кислотного или ферментативного гидролиза распадаются на составляющие компоненты) и конденсированные - не поддающиеся гидролизу. Отличительный признак дубильных веществ - высокое удельное содержание фенольных гидроксильных групп. Дубильные вещества содержатся почти во всех широко известных растениях, выполняя роль сопутствующих или балластных веществ. Однако при значительной концентрации дубильных веществ и отсутствии каких-либо других соединений, обладающих высокой фармакологической активностью, дубильные вещества переходят в разряд действующих. Они обладают вяжущим, кровоостанавливающим и антисептическим действием, ограничивают воспалительный процесс, используются как антидот при отравлении алкалоидами и солями тяжелых металлов. Гидролизуемые дубильные вещества обладают более мягким дубящим действием по сравнению с конденсированными, что особенно важно при воздействии на слизистые оболочки.

- антраценпроизводные – соединения, в основе которых лежит ядро антрацена различной степени окисленности. Перечень растений, содержащий эту группу биологически активных веществ в качестве действующих, невелик, а сырье преимущественно обладает слабительным действием, стимулируя перистальтику толстого кишечника: рецепторы слизистой оболочки толстой кишки более чувствительны к антраценам и реагируют на такие их концентрации, на которые не реагируют рецепторы тонкого кишечника.

4. Углеводы - первичные продукты синтеза биологически активных веществ и представляющие собой алифатические полиоксикарбонильные соединения и их многочисленные производные. Непосредственное лечебное действие оказывают растения, содержащие высокомолекулярные полисахариды. К ним, в частности, относятся:

- клетчатка – высокомолекулярный гомополисахарид, построенный в линейную цепь из остатков D-глюкозы, связанных b-1,4-гликозидными связями. Является основой перевязочных материалов. Клетчатка набухает в толстом кишечнике, вызывая раздражение рецепторов слизистых оболочек, стимулируя перистальтику и тем самым оказывая слабительный эффект.

- пектиновые вещества - высокомолекулярные гетерополисахариды, главным структурным компонентом которых является галактуроновая кислота и ее метилированные производные. Пектины обладают кровоостанавливающим, ранозаживляющим, антисклеротическим, гипотензивным и противоязвенным эффектом; снижают токсичность антибиотиков и удлиняют сроки их действия; способствуют выведению из организма радионуклидов и тяжелых металлов - свинца, меди, кобальта и т.д.

- крахмал – высокомолекулярный гомогликан, мономерной единицей которых является только глюкоза. В медицинской практике используется как наполнитель и в качестве присыпок.

- слизи и камеди - гидрофильные соединения, представляющие собой смеси кислых и нейтральных гетерополисахаридов. В медицинской практике слизьсодержащие растения применяют как мягчительные, обволакивающие, противовоспалительные и отхаркивающие средства.

5. Липиды. Эта группа растительных биологически активных веществ представлена преимущественно жидкими маслами (за исключением масла какао) - смесями триглицеридов высокомолекулярных жирных кислот. Растительные жиры обладают ценными свойствами, среди которых можно отметить мягчительное, антисклеротическое, антиоксидантное, слабительное, эпителизирующее и болеутоляющее действие.

6. Витамины - органические вещества различной химической природы, в малых количествах необходимые для нормального функционирования организма. Растениями синтезируются практически все витамины, за исключением витамина А и витаминов группы D, которые образуются в организме животных из растительных предшественников. Те или иные витамины или группа витаминов содержатся в любом растении, но в некоторых их содержание достигает значительной величины. В связи с этим выделяют лекарственные растения, обладающие поливитаминной активностью, а также С-, Р-, А-, К-, U- и F- витаминной активностью.

7. Минеральные элементы - химические элементы, усваиваемые растениями. По содержанию они подразделяются на макроэлементы, микроэлементы и ультрамикроэлементы. Содержание макроэлементов достигает десятых долей процента (Fe, Ca, K, Mg, Na, P, S, Al, Si, Cl). Микроэлементы в растениях содержатся в количествах 10 -2 - 10 -5 % (Mn, B, Sr, Cu, Li, Ba, Br, Ni и др.). Ультрамикроэлементы накапливаются в клетках в концентрации менее 10 -6 % (As, Mo, Co, I, Pb, Ag, Au, Ra и др.). Некоторые растения способны избирательно концентрировать определенные минеральные элементы. Например, морские водоросли - бром и йод; кукуруза – золото; астрагалы - селен; сфагнум – серебро; вересковые и брусничные - марганец и т.д.

Отличительной особенностью минеральных комплексов, содержащихся в растениях, является то, что они представляют собой естественную комбинацию, свойственную живой природе в целом, прошедшую через своеобразный биологический фильтр и вследствие этого отличающуюся наиболее благоприятным для организма соотношением основных компонентов. Существенным преимуществом растений является и то, что микроэлементы в них находятся в органически связанной, т.е. наиболее доступной и усвояемой форме. Активность любого минерального элемента в органическом комплексе во много раз превосходят таковую в неорганических солях.

Минеральные элементы входят в состав или активируют до 300 ферментов. Известны металлоорганические соединения и неферментативного характера, но с высокой биологической активностью, как, например, хлорофилл, купропротеины и др.

Вопрос о целевом использовании микроэлементов, содержащихся в растениях, к настоящему времени остается открытым и недостаточно исследованным, хотя их терапевтическая ценность очень велика, особенно при состояниях, сопровождающихся нарушениями в организме человека микроэлементного равновесия.

Кроме вышеперечисленных групп биологически активных веществ растительного происхождения необходимо отметить тиогликозиды , образующие в процессе гидролиза горчичный спирт (аллилизотиоцианат) и цианогликозиды , соединения, гидролизующиеся с образованием синильной кислоты. Ассортимент официнального сырья весьма ограничен, как ограничена и область его применения.

Биологически активные вещества

К биологически активным веществам относятся ферменты, гормоны, антибиотики, витамины.

Ферменты (энзимы) – специфические белки, выполняющие в организме функции биологических катализаторов. Известно около 1000 ферментов, катализирующих соответствующее число индивидуальных реакций. Ферменты имеют высокую специфичность действия, интенсивность, действуют в «мягких» условиях (температура 30-35ºС, нормальное давление, рН~7). Процесс катализа строго ограничен в пространстве и времени. Часто, вещества, образующиеся под действием одного фермента, являются субстратом для другого фермента. Ферменты имеют все уровни белковой структуры (первичная, вторичная, третичная; четвертичная – особенно для регуляторных ферментов). Структурная часть молекулы, принимающая непосредственное участие в катализе наз. Каталитическим участком. Контактная площадка – место на поверхности фермента, к которому прикрепляется вещество. Каталитический центр и контактная площадка образуют активный центр (в молекуле их обычно несколько). Группы ферментов:

1. Не имеющие небелковых компонентов;

2. Имеющие белковый компонент – апофермент и требующие для проявления активности определенные органические вещества – коферменты.

Иногда в состав фермента входят различные ионы, в том числе и ионы металлов. Ионный компонент называется ионным кофактором. Ингибиторы – вещества угнетающие активность ферментов, образуют с ними инертные соединения. Такими веществами иногда являются сами субстраты или продукты реакции (в зависимости от концентрации). Изоферменты – генетически детерминированные формы фермента в одном и том же организме, характеризующиеся сходной субстратной спецификой.

Классификация ферментов

Ферменты классифицируются по типу реакции, которую они катализируют. Классы:

1. Оксидоредутазы – катализируют реакции окисления.

2. Трансферазы – перенос функциональных групп.

3. Гидролазы – гидролитический распад.

4. Лиазы – негидролитическое отщепление определенных групп атомовс образованием двойной связи.

5. Изомеразы – пространственная перестройка в пределах одной молекулы.

6. Лигазы – реакции синтеза, сопряженные с распадом догатых энергией связей.

Гормоны – химические вещества, обладающие чрезвычайно высокой биологической активностью, образованы специфической тканью (железами внутренней секреции). Гормоны контролируют обмен веществ, клеточную активность, проницаемость клеточных мембран, обеспечивают гомеостаз, др. специфические функции. Обладают дистантным действием (разносятся кровью во все ткани). Образование гормонов контролируется по принципу обратной связи: не только регулятор влияет на процесс, но и состояние процесса влияет на интенсивность образования регулятора.

Классификация гормонов

Есть несколько классификаций гормонов: связанная с происхождением гормона, с его химическим составом и др. По химической природе гормоны делятся на (химическая классификация):

1. Стероидные – производные стеролов с укороченными боковыми цепями.

Эстрон, эстрадиол, эстриол – яичники; вызывают образование женских вторичных половых признаков.

Кетоны и оксикетоны:

Тестостерон (XVI) – семенники; вызывает образование мужских вторичных половых признаков.

Кортизон, кортизол, кортикостерон (XVII), 11-дегидрокортикостерон,17-оксикортикостерон – кора надпочечников; регулируют обмен углеводов и белков.

11-дезоксикортикостерон, альдостерон – кора надпочечников; регулируют обмен электролитов воды.

2. Пептидные.

Циклические октапептиды.

Окситоцин, вазопрессин – гормоны задней доли гипофиза.

Полипептиды.

Интермедин, хроматотропин – гормоны промежуточной доли гипофиза; вызывает расширение меланофор в хроматофорах кожи.

Адренокортикотропный гормон – гормон передней доли гипофиза; стимулирует функцию коры надпочечников.

Инсулин – гормон поджелудочной железы; регулирует обмен углеводов.

Секретин – гормон слизистых желез кишечника; стимулирует выделение панкреатического сока.

Глюкагон – гормон островков Лангеранса поджелудочной железы; повышает концентрацию сахара в крови.

Белковые вещества

Лютеотропин – передняя доля гипофиза; поддерживает функцию желтого тела и лактацию.

Паратиреокрин – околощитовидная железа; поддерживает концентацию кальция и фосфора в крови.

Соматотропин – передняя доля гипофиза; стимулирует рост, регулирует анаболизм белков.

Ваготонин – поджелудочная железа; стимулирует парасимпатическую нервную систему.

Центропнеин – поджелудочная железа; стимулирует дыхание.

Гликопротеины

Фолликулостимулирующий (гонадотропный) гормон – передняя доля гипофиза; стимулирует рост фолликул, яичников и сперматогенез.

Лютеинизирующий гормон – передняя доля гипофиза; стимулирует образование эстрогенов и андрогенов.

Тиреотропин – передняя доля гипофиза; стимулирует деятельность щтовиной железы.

3. Родственные тирозину.

Фенилалкиламины

Адреналин (XVIII), норадреналин (медиатор нервного возбуждения) – гормоны мозгового слоя надпочечников; повышают кровяное давление, вызывают гликогенолиз, гипергликемию.

Иодированые тиронины.

Тироксин, 3,5,3-трииодотиронин – гормоны щитовидной железы; стимулируют основной обмен.

Антибиотики – вещества, образованные микроорганизмами или получаемые из других источников, обладающие антибактериальным, антивирусным, противоопухолевым действием. Выделено и описано св. 400 антибиотиков, которые принадлежат к различным классам химических соединений. Среди них есть пептиды, полиеновые соединения, полициклические вещества.

Для них характерно избирательное действие на определенные виды микроорганизмов; характеризуются специфическим антимикробным спектром действия. Подавляют некоторые болезнетворные микроорганизмы, не повреждая при этом растительных и животных тканей. Антибиотики действуют встраиваясь в обмен веществ.

Классификация антибиотиков

Есть несколько классификаций антибиотиков. По происхождению:

1. Грибкового происхождения

2. Бактериального происхождения

3. Животного происхождения

По спектру действия:

1. С узким спектром действия – действующие на грамположительные микробы(различные кокки). Это: пенициллин, стрептомицин.

2. С широким спектром действия – действующие как на грамположительные так и на грамотрицательные микроорганизмы(различные палочки). Это: тетракциклины, неомицин.

(Грамположительные и грамотрицательные антибиотики отличаются по отношению к определенным красителям. Грамположительные образуют с крастелем окрашенный комплекс, который не обесцвечивается с спирте; грамотрицательные не окрашиваются).

3. Действующие на грибки – группа полиеновых антибиотиков. Это: нистатин, кандицидин

4. Действующие как на микроорганизмы так и на опухолевые клетки животных. Это: актиномицины, митомицин…

По типу противомикробной активности:

1. Бактерицидные.

2. Бактериостатические.

Витамины – группа дополнительных веществ еды, которые не синтезируются в организме человека. Витамины являются биологическими катализаторами химических реакций или реагентами фотохимических процессов в организме. Участвуют в обмене веществ в составе ферментных систем. В организмы человека и животных попадают из внешней среды. Некоторые производные витаминов с замещенными функциональными группировками оказывают противоположное по сравнению с витаминами действие, и называются антивитаминами. Становятся витаминами. Провитамины – вещества, которые после ряда превращений в организме

Классификация витаминов

Классификация по отношению к человеческому организму:

1. Повышающие общую активность организма – регулируют функциональное состояние центральной нервной системы (B1, B2, PP, A, C).

2. Антигеморрагические – обеспечивающие нормальную проницаемость и эластичность кровеносных сосудов (C, P, K).

3. Антианемические – регулируют кроветворение (B12, Bc, C).

4. Антиинфекционные – повышающие устойчивость организма к инфекциям (C, A).

5. Регулирующие зрение – усиливающие остроту зрения.(A, B2, C).

Также различают:

1. Водорастворимые (витамины С, В1, В2, В6, В12, РР, пантотеновая кислота, биотин, мезоинозит, холин, п-аминбензойная кислота, фолиевая кислота).

2. Жирорастворимые (витамины А, А2, D2, D3, Е, К1, К2).

Витамин А (ретинол) – влияет на зрение, рост (V).

Витамин В1 (тиамин) – участвует в обмене углеводов (VI).

Витамин В2 (рибофлавин) – участвует в обмене углеродов, жиров, белков; влияет на рост, зрение, центральную нервную систему (VII).

Витамин РР (никотиновая кислота) –участвует в клеточном дыхании (VIII).

Витамин В6 (пиридоксин)– участвует в усвоении белков, жиров; азотистый обмен (IX).

Витамин В9 (фолиевая кислота) – участвует в обмене веществ, синтезе нуклеиновых кислот, кроветворении (X).

Витамин В12 (цианокобаламин) – участвует в кроветворении (XI).

Витамин С (аскорбиновая кислота) – участвует в усвоении белков, восстановлении тканей (XII).

Витамин D (кальциферол) – участвует в обмене минеральных веществ (XIII).

Витамин Е (токоферол) – мышцы (XIV).

Витамин К (филлохиноны) – влияет на сворачиваемость крови (XV).