Главная · Повышение потенции · Как гидра воспринимает раздражение. О реакции пресноводной гидры на экзогенные биологически активные (гормо-нальные) соединения. Размножение и развитие

Как гидра воспринимает раздражение. О реакции пресноводной гидры на экзогенные биологически активные (гормо-нальные) соединения. Размножение и развитие

С.М. Никитина, И.А. Ваколюк (Калининградский государственный университет)

Функционирование гормонов как важнейших регуляторов и интеграторов метаболизма и разнообразнейших функций в организме невозможно без существования систем специфической рецепции сигнала и его трансформации в конечный полезный эффект, то есть без гормонкомпетентной системы . Иными словами, наличие реакции на организменном уровне на экзогенные соединения невозможно без наличия циторецепции к этим соединениям и соответственно без существования у этих животных эндогенных соединений, родственных тем, которыми мы воздействуем. Это не противоречит концепции универсальных блоков , когда основные молекулярные структуры в функциональных системах живых организмов обнаруживаются практически в полном наборе уже на самых ранних этапах эволюции, какие только доступны изучению, представлены ограниченным числом молекул и осуществляют одноименные элементарные функции не только у представителей одного царства, например в разных группах млекопитающих или даже в разных типах, но и у представителей различных царств, в том числе у многоклеточных и одноклеточных, у высших эукариот и прокариот.

Однако следует обратить внимание на то, что данные о составе и функциях соединений, выполняющих роль гормонов у позвоночных животных, у представителей таксонов достаточно низкого филогенетического уровня только начинают появляться . Из групп животных низкого филогенетического уровня - гидра как представитель кишечнополостных является наиболее примитивным организмом, обладающим настоящей нервной системой. Нейроны различаются морфологически, химически и, вероятно, функционально. Каждый из них содержит нейросекреторные гранулы . Установлено значительное разнообразие нейрональных фенотипов у гидры. В гипостоме имеются упорядоченно расположенные группы по 6-11 синаптически связанных клеток, которые можно рассматривать как доказательство наличия у гидр примитивных нервных ганглиев. Кроме обеспечения поведенческих реакций, нервная система гидр выполняет роль эндокринной регуляторной системы , обеспечивая контроль метаболизма, размножения, развития. У гидр существует дифференцировка нервных клеток по составу содержащихся в них нейропептидов ). Предполагают , что молекулы окситоцина, вазопрессина, половых стероидов и глюкокортикоидов являются универсальными. Они найдены и у представителей кишечнополостных. Головной и подошвенный активаторы (и ингибиторы) выделены из метаноловых экстрактов тела гидр. Головной активатор, выделенный из актиний, аналогичен по составу и свойствам нейропептиду, обнаруженному в гипоталамусе и кишечнике коровы, крысы, свиньи, человека и в крови последнего. Кроме того, было показано, что и у беспозвоночных и у позвоночных в обеспечении реакции клеток на нейрогормоны участвуют циклические нуклеотиды, то есть механизм действия этих веществ в двух филогенетически различных линиях един.

Целью данного исследования, учитывая вышеизложенное, мы избрали изучение комплексного влияния на пресноводную гидру экзогенных биологически активных (гормональных) соединений.

Материал и методы исследования

Животных для эксперимента собирали в июне-июле 1985-1992 гг. на стационаре (протока реки Немонин, поселок Матросово Полесского района). Адаптация к содержанию в лабораторных условиях - 10-14 суток. Объем материала: тип - Coelenterata; класс - Hydrozoa; вид - Hydra oligactis Pallas; количество - 840. Количество животных отражено в начале эксперимента и не учитывается прирост численности.

В работе были использованы водорастворимые гормональные соединения окситоцинового ряда, передней доли гипофиза с исходной активностью в 1 мл (ип) (гифотоцин - 5ЕД, питуитрин - 5ЕД, маммофизин - 3ЕД, префизон - 25ЕД, гонадотропин - 75ЕД) и стероид - преднизолон - 30 мг, которые у позвоночных обеспечивают трехзвенную эндокринную регуляцию, включающую гипоталамо-гипофизарный комплекс и эпителиальные железы.

В предварительных опытах были использованы концентрации препаратов от 0,00002 до 20 мл ип/л среды содержания животных.

Проводилось три группы исследования:

1-я - определение "+" или "-" реакции во всех принятых нами концентрациях;

2-я - определение диапазона концентраций, обеспечивающих работу в хроническом режиме разной продолжительности;

3-я - хронический эксперимент.

В эксперименте учитывалась активность почкования гидры. Полученные данные подвергались стандартной статистической обработке.

Результаты исследований

При определении "±" реакции гидр в широком диапазоне концентраций соединений были отобраны три (0,1 мл ип/л среды, 0,02 мл ип/л среды и 0,004 мл ип/л среды).

В контрольной группе гидр в течение пяти суток почкование оставалось на уровне 0,0- 0,4 почки /гидру (Ра). В среде минимальной концентрации префизона прирост был 2,2 особи/гидру, питуитрина - 1,9 особи/гидру (достоверность различий с контролем крайне высока - с уровнем значимости 0,01). В средних концентрациях хорошо себя проявили гифотоцин, маммофизин и префизон (1,8-1,9 особей/гидру). Преднизолон в минимальной, и особенно в средней концентрации, вызвал прирост численности 1,1-1,3 особи/гидру, что значительно превышает контроль.

В следующем эксперименте использованы только оптимальные концентрации гормональных соединений. Продолжительность эксперимента - 9 суток. К началу опыта по значению Ра контрольная и экспериментальная группы достоверно не различимы. Через девять суток эксперимента значения Ра достоверно отличалось в опытных группах и контроле с уровнем значимости 0,05 (табл. 1).

Таблица 1

Влияние гормональных препаратов на почкование гидры (Ра) и вероятность достоверности их различий (р)

Среда Ра Изменение р
1 сутки 9 сутки Ра 1 сутки 9 сутки
Контроль 1,2±0,8 1,5±0,9 0,3±0,1 - -
Гонадотропин 2,1±1,2 5,1±0,3 3,0±0,8 0,71 0,95
Префизон 1,1±0,7 4,9±2,0 3,8±1,3 0,13 0,97
Гифотоцин 1,8±0,8 6,1±2,2 4,3±1,4 0,58 0,99
Питуитрин 0,8±0,5 4,5±2,0 3,7±1,5 0,47 0,98
Маммофизин 1,1±0,3 5,3±2,0 4,2±1,7 0,15 0,99
Преднизолон 1,5±0,4 7,1±2,2 5,6±1,8 0,43 0,99

Как видно из таблицы, наибольшее значение Ра получено при содержании животных в преднизолоне. Все пептидные препараты дают приблизительно сходные значения Ра (в среднем 3,8±0,5). Однако и здесь есть разброс. Наилучший эффект (4,3±1,4) достигается при содержании животных в среде с очищенным экстрактом нейрогипофиза - гифотоцином. Близок к нему по степени воздействия маммофизин. В экспериментальных группах с питуитрином и префизоном значения величины Ра равны 3,7±1,5 и 3,8±1,3 соответственно. Наименьший эффект дает воздействие на гидр гонадотропином. Недостоверные различия в Ра возникают к концу первых суток после помещения гидр в растворы гормональных препаратов. На протяжении девяти суток эксперимента Ра в контроле не изменяется. Начиная с третьих суток Ра во всех экспериментальных группах существенно превышает Ра в контроле. Следует отметить постепенное достоверное увеличение этого показателя у экспериментальных групп к девятым суткам.

Для оценки статистической достоверности оказываемых воздействий сравнивались значения критерия F (отношение средних квадратов), полученные для каждого из двух факторов в отдельности (А - фактор длительности содержания; В - фактор воздействия) и для их взаимодействия (А+В), и табличные значения критерия для двух уровней значимости Р=0,05 и Р=0,01 (табл. 2).

Таблица 2

Результаты дисперсионного анализа влияния гормональных препаратов и длительности содержания на интенсивность бесполого размножения Hydra oligactis

Фак- Фактическое в группах Табличое Р
торы Питуитрин Маммофизин Гифотоцин Гонадотропин Префизон Преднизолон 0,05 0,01
А 3,44 1,40 2,27 2,17 3,62 1,30 1,92 2,50
В 8,37 4,04 8,09 4,73 8,26 12,70 4,00 7,08
А+В 1,12 0,96 0,56 0,37 1,07 1,03 1,92 2,50

Как видно из таблицы, Fфакт для фактора воздействия при уровне значимости 0,05 во всех экспериментальных группах больше Fтабл, а при уровне значимости 0,01 такая картина наблюдается в группах с питуитрином, гифотоцином, префизоном и преднизолоном, причем степень воздействия в группе с преднизолоном самая высокая, намного больше, чем в группах с питуитрином, гифотоцином и префизоном, имеющих сходную силу воздействия (значения Fфакт очень близки). Влияние взаимодействия факторов А и В во всех экспериментальных группах не является доказанным.

Для фактора А Fфакт меньше Fтабл (при обоих уровнях значимости) в группах с маммофизином и преднизолоном. В группах с гифотоцином и гонадотропином Fфакт больше Fтабл при Р=0,05, то есть влияние этого фактора не может считаться окончательно доказанным, в отличие от экспериментальных групп с питуитрином и префизоном, где Fфакт больше Fтабл и при Р=0,01 и при Р=0,05.

Все гормональные препараты, кроме гонадотропина, в той или иной степени задерживают начало бесполого размножения. Однако статистически достоверным это оказывается только в группе с префизоном (Р=0,01). Использованные в эксперименте гормональные препараты достоверно не влияют на продолжительность развития единственной почки, изменяют взаимное влияние первой и второй почек: питуитрин, маммофизин, префизон, гонадотропин - при наличии только сформированного головного отдела развивающихся почек; питуитрин, гонадотропин и преднизолон - при наличии хотя бы одного сформированного подошвенного отдела развивающихся почек.

Таким образом, можно считать установленной чувствительность гидр к широкому спектру гормональных соединений позвоночных и предположить, что экзогенные гормональные соединения включаются (как синергисты или антагонисты) в эндокринный регуляторный цикл, присущий самой гидре.

Список литературы

1. Перцева М.Н. Межмолекулярные основы развития гормонкомпетентности. Л.: Наука, 1989.

2. Богута К.К. Некоторые морфологические принципы формирования низкоорганизованных нервных систем в онто- и филогенезе // Успехи современной биологии. М.: Наука, 1986. Т. 101. Вып. 3.

3. Иванова-Казас А.А. Бесполое размножение животных. Л., 1971.

4. Наследов Г.А. Многовариантность осуществления элементарных функциональных задач и упрощение системы молекулярных взаимодействий как закономерность функциональной эволюции // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

5. Наточин Ю.В., Бройнлих Х. Использование методов токсикологии в изучении проблемы эволюции функций почки // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

6. Никитина С.М. Стероидные гомоны у беспозвоночных животных: Монография. Л.: Изд-во ЛГУ, 1987.

7. Афонькин С.Ю. Межклеточное самораспознование у простейших // Итоги науки и техники. М., 1991. Т. 9.

8. Проссер Л. Сравнительная физиология животных. М.: Мир, 1977. Т. 3.

9. Резников К.Ю., Назаревская Г.Д. Стратегия развития нервной системы в онто- и филогенезе. Гидра // Успехи современной биологии. М.: Наука, 1988. Т. 106. Вып.2 (5).

10. Шейман И.М., Балобанова Э.Ф., Пептидные гормоны беспозвоночных // Успехи современной биологии. М.: Наука, 1986. Т. 101. Вып. 2.

11. Этингоф Р.Н. Изучение молекулярной структуры нейрорецепторов. Методические подходы, эволюционные аспекты // Журнал эволюционной биохимии и физиологии. 1991. Т. 27. № 5.

12. Highnam K.C., Hill L. The comparative Endocrinology of the Invertebrates // Edward Arnold, 1

О реакции пресноводной гидры на экзогенные биологически активные (гормональные) соединения

С.М. Никитина, И.А. Ваколюк (Калининградский государственный университет)

Функционирование гормонов как важнейших регуляторов и интеграторов метаболизма и разнообразнейших функций в организме невозможно без существования систем специфической рецепции сигнала и его трансформации в конечный полезный эффект, то есть без гормонкомпетентной системы . Иными словами, наличие реакции на организменном уровне на экзогенные соединения невозможно без наличия циторецепции к этим соединениям и соответственно без существования у этих животных эндогенных соединений, родственных тем, которыми мы воздействуем. Это не противоречит концепции универсальных блоков , когда основные молекулярные структуры в функциональных системах живых организмов обнаруживаются практически в полном наборе уже на самых ранних этапах эволюции, какие только доступны изучению, представлены ограниченным числом молекул и осуществляют одноименные элементарные функции не только у представителей одного царства, например в разных группах млекопитающих или даже в разных типах, но и у представителей различных царств, в том числе у многоклеточных и одноклеточных, у высших эукариот и прокариот.

Однако следует обратить внимание на то, что данные о составе и функциях соединений, выполняющих роль гормонов у позвоночных животных, у представителей таксонов достаточно низкого филогенетического уровня только начинают появляться . Из групп животных низкого филогенетического уровня - гидра как представитель кишечнополостных является наиболее примитивным организмом, обладающим настоящей нервной системой. Нейроны различаются морфологически, химически и, вероятно, функционально. Каждый из них содержит нейросекреторные гранулы . Установлено значительное разнообразие нейрональных фенотипов у гидры. В гипостоме имеются упорядоченно расположенные группы по 6-11 синаптически связанных клеток, которые можно рассматривать как доказательство наличия у гидр примитивных нервных ганглиев. Кроме обеспечения поведенческих реакций, нервная система гидр выполняет роль эндокринной регуляторной системы , обеспечивая контроль метаболизма, размножения, развития. У гидр существует дифференцировка нервных клеток по составу содержащихся в них нейропептидов ). Предполагают , что молекулы окситоцина, вазопрессина, половых стероидов и глюкокортикоидов являются универсальными. Они найдены и у представителей кишечнополостных. Головной и подошвенный активаторы (и ингибиторы) выделены из метаноловых экстрактов тела гидр. Головной активатор, выделенный из актиний, аналогичен по составу и свойствам нейропептиду, обнаруженному в гипоталамусе и кишечнике коровы, крысы, свиньи, человека и в крови последнего. Кроме того, было показано, что и у беспозвоночных и у позвоночных в обеспечении реакции клеток на нейрогормоны участвуют циклические нуклеотиды, то есть механизм действия этих веществ в двух филогенетически различных линиях един.

Целью данного исследования, учитывая вышеизложенное, мы избрали изучение комплексного влияния на пресноводную гидру экзогенных биологически активных (гормональных) соединений.

Материал и методы исследования

Животных для эксперимента собирали в июне-июле 1985-1992 гг. на стационаре (протока реки Немонин, поселок Матросово Полесского района). Адаптация к содержанию в лабораторных условиях - 10-14 суток. Объем материала: тип - Coelenterata; класс - Hydrozoa; вид - Hydra oligactis Pallas; количество - 840. Количество животных отражено в начале эксперимента и не учитывается прирост численности.

В работе были использованы водорастворимые гормональные соединения окситоцинового ряда, передней доли гипофиза с исходной активностью в 1 мл (ип) (гифотоцин - 5ЕД, питуитрин - 5ЕД, маммофизин - 3ЕД, префизон - 25ЕД, гонадотропин - 75ЕД) и стероид - преднизолон - 30 мг, которые у позвоночных обеспечивают трехзвенную эндокринную регуляцию, включающую гипоталамо-гипофизарный комплекс и эпителиальные железы.

В предварительных опытах были использованы концентрации препаратов от 0,00002 до 20 мл ип/л среды содержания животных.

Проводилось три группы исследования:

1-я - определение "+" или "-" реакции во всех принятых нами концентрациях;

2-я - определение диапазона концентраций, обеспечивающих работу в хроническом режиме разной продолжительности;

3-я - хронический эксперимент.

В эксперименте учитывалась активность почкования гидры. Полученные данные подвергались стандартной статистической обработке.

Результаты исследований

При определении "" реакции гидр в широком диапазоне концентраций соединений были отобраны три (0,1 мл ип/л среды, 0,02 мл ип/л среды и 0,004 мл ип/л среды).

В контрольной группе гидр в течение пяти суток почкование оставалось на уровне 0,0- 0,4 почки /гидру (Ра). В среде минимальной концентрации префизона прирост был 2,2 особи/гидру, питуитрина - 1,9 особи/гидру (достоверность различий с контролем крайне высока - с уровнем значимости 0,01). В средних концентрациях хорошо себя проявили гифотоцин, маммофизин и префизон (1,8-1,9 особей/гидру). Преднизолон в минимальной, и особенно в средней концентрации, вызвал прирост численности 1,1-1,3 особи/гидру, что значительно превышает контроль.

В следующем эксперименте использованы только оптимальные концентрации гормональных соединений. Продолжительность эксперимента - 9 суток. К началу опыта по значению Ра контрольная и экспериментальная группы достоверно не различимы. Через девять суток эксперимента значения Ра достоверно отличалось в опытных группах и контроле с уровнем значимости 0,05 (табл. 1).

Таблица 1

Влияние гормональных препаратов на почкование гидры (Ра) и вероятность достоверности их различий (р)

СредаРаИзменениер1 сутки9 суткиРа1 сутки9 суткиКонтроль1,20,81,50,90,30,1--Гонадотропин2,11,25,10,33,00,80,710,95Префизон1,10,74,92,03,81,30,130,97Гифотоцин1,80,86,12,24,31,40,580,99Питуитрин0,80,54,52,03,71,50,470,98Маммофизин1,10,35,32,04,21,70,150,99Преднизолон1,50,47,12,25,61,80,430,99

Как видно из таблицы, наибольшее значение Ра получено при содержании животных в преднизолоне. Все пептидные препараты дают приблизительно сходные значения Ра (в среднем 3,80,5). Однако и здесь есть разброс. Наилучший эффект (4,31,4) достигается при содержании животных в среде с очищенным экстрактом нейрогипофиза - гифотоцином. Близок к нему по степени воздействия маммофизин. В экспериментальных группах с питуитрином и префизоном значения величины Ра равны 3,71,5 и 3,81,3 соответственно. Наименьший эффект дает воздействие на гидр гонадотропином. Недостоверные различия в Ра возникают к концу первых суток после помещения гидр в растворы гормональных препаратов. На протяжении девяти суток эксперимента Ра в контроле не изменяется. Начиная с третьих суток Ра во всех экспериментальных группах существенно превышает Ра в контроле. Следует отметить постепенное достоверное увеличение этого показателя у экспериментальных групп к девятым суткам.

Для оценки статистической достоверности оказываемых воздействий сравнивались значения критерия F (отношение средних квадратов), полученные для каждого из двух факторов в отдельности (А - фактор длительности содержания; В - фактор воздействия) и для их взаимодействия (А+В), и табличные значения критерия для двух уровней значимости Р=0,05 и Р=0,01 (табл. 2).

Таблица 2

Результаты дисперсионного анализа влияния гормональных препаратов и длительности содержания на интенсивность бесполого размножения Hydra oligactis

Фак-Фактическое в группахТабличое РторыПитуитринМаммофизинГифотоцинГонадотропинПрефизонПреднизолон0,050,01А3,441,402,272,173,621,301,922,50В8,374,048,094,738,2612,704,007,08А+В1,120,960,560,371,071,031,922,50Как видно из таблицы, Fфакт для фактора воздействия при уровне значимости 0,05 во всех экспериментальных группах больше Fтабл, а при уровне значимости 0,01 такая картина наблюдается в группах с питуитрином, гифотоцином, префизоном и преднизолоном, причем степень воздействия в группе с преднизолоном самая высокая, намного больше, чем в группах с питуитрином, гифотоцином и префизоном, имеющих сходную силу воздействия (значения Fфакт очень близки). Влияние взаимодействия факторов А и В во всех экспериментальных группах не является доказанным.

Для фактора А Fфакт меньше Fтабл (при обоих уровнях значимости) в группах с маммофизином и преднизолоном. В группах с гифотоцином и гонадотропином Fфакт больше Fтабл при Р=0,05, то есть влияние этого фактора не может считаться окончательно доказанным, в отличие от экспериментальных групп с питуитрином и префизоном, где Fфакт больше Fтабл и при Р=0,01 и при Р=0,05.

Все гормональные препараты, кроме гонадотропина, в той или иной степени задерживают начало бесполого размножения. Однако статистически достоверным это оказывается только в группе с префизоном (Р=0,01). Использованные в эксперименте гормональные препараты достоверно не влияют на продолжительность развития единственной почки, изменяют взаимное влияние первой и второй почек: питуитрин, маммофизин, префизон, гонадотропин - при наличии только сформированного головного отдела развивающихся почек; питуитрин, гонадотропин и преднизолон - при наличии хотя бы одного сформированного подошвенного отдела развивающихся почек.

Таким образом, можно считать установленной чувствительность гидр к широкому спектру гормональных соединений позвоночных и предположить, что экзогенные гормональные соединения включаются (как синергисты или антагонисты) в эндокринный регуляторный цикл, присущий самой гидре.

Список литературы

1. Перцева М.Н. Межмолекулярные основ

Рисунок: Строение пресноводной гидры. Лучевая симетрия гидры

Среда обитания, особенности строения и жизнедеятельности пресноводного полипа гидры

В озерах, речках или прудах с чистой, прозрачной водой на стеблях водных растений встречается маленькое полупрозрачное животное - полип гидра ("полип" означает "многоног"). Это прикрепленное или малоподвижное кишечнополостное животное с многочисленными щупальцами . Тело обыкновенной гидры имеет почти правильную цилиндрическую форму. На одном конце находится рот , окруженный венчиком из 5-12 тонких длинных щупалец, другой конец вытянут в виде стебелька с подошвой на конце. При помощи подошвы гидра прикрепляется к различным подводным предметам. Тело гидры вместе со стебельком обычно длиной до 7 мм, зато щупальца способны вытягиваться на несколько сантиметров.

Лучевая симметрия гидры

Если вдоль тела гидры провести воображаемую ось, то ее щупальца будут расходиться от этой оси во все стороны, как лучи от источника света. Свешиваясь вниз с какого-нибудь водного растения, гидра постоянно покачивается и медленно водит щупальцами, подстерегая добычу. Так как жертва может появиться с любой стороны, лучеобразно расставленные щупальца лучше всего соответствуют такому способу охоты.
Лучевая симметрия характерна, как правило, для животных, ведущих прикпрепленный образ жизни.

Кишечная полость гидры

Тело гидры имеет вид мешочка, стенки которого состоят из двух слоев клеток - наружного (эктодермы) и внутреннего (энтодермы). Внутри тела гидры имеется кишечная полость (отсюда и название типа - кишечнополостные).

Наружный слой клеток гидры - эктодерма

Рисунок: строение наружного слоя клеток - эктодермы гидры

Наружный слой клеток гидры называется - эктодерма . Под микроскопом в наружном слое гидры - эктодерме - видно несколько разновидностей клеток. Больше всего здесь кожно-мускулъных. Соприкасаясь боковыми сторонами, эти клетки создают покров гидры. В основании каждой такой клетки есть сократимое мускульное волоконце, играющее важную роль при движении животного. Когда волоконца всех кожно-мускульных клеток сокращаются, тело гидры сжимается. Если сокращаются волоконца только на одной стороне тела, то в эту сторону гидра и нагибается. Благодаря работе мускульных волоконец гидра может медленно передвигаться с места на место, поочередно "ступая" то подошвой, то щупальцами. Такое движение можно сравнить с медленным кувырканием через голову.
В наружном слое расположены и нервные клетки . Они имеют звездообразную форму, так как снабжены длинными отростками.
Отростки соседних нервных клеток соприкасаются между собой и образуютнервное сплетение , охватывающее все тело гидры. Часть отростков подходит к кожно-мускульным клеткам.

Раздражимость и рефлексы гидры

Гидра способна ощущать прикосновения, изменение температуры, появление в воде различных растворенных веществ и другие раздражения. От этого ее нервные клетки возбуждаются. Если к гидре прикоснуться тонкой иглой, то возбуждение от раздражения одной из нервных клеток передается по отросткам другим нервным клеткам, а от них - к кожно-мускульным клеткам. Это вызывает сокращение мускульных волоконец, и гидра сжимается в комочек.

Рисунок: раздражимость гидры

На этом примере мы знакомимся со сложным явлением в организме животного - рефлексом . Рефлекс состоит из трех последовательных этапов:восприятия раздражения , передачи возбуждения от этого раздражения по нервным клеткам и ответной реакции организма каким-либо действием. В связи с простотой организации гидры ее рефлексы очень однообразны. В дальнейшем мы ознакомимся с гораздо более сложными рефлексами у более высокоорганизованных животных.

Стрекательные клетки гидры

Рисунок: строкательные или крапивные клетки гидры

Все тело гидры и особенно ее щупальца усажены большим количествомстрекательных , или крапивных клеток. Каждая из этих клеток имеет сложное строение. Кроме цитоплазмы и ядра в ней заключена пузыревидная стрекательная капсула, внутри которой свернута тонкая трубочка -стрекательная нить . Наружу из клетки торчит чувствительный волосок . Как только рачок, малек рыбы или другое маленькое животное коснется чувствительного волоска, стрекательная нить стремительно распрямляется, ее конец выбрасьшается наружу и вонзается в жертву. По каналу, проходящему внутри нити, из стрекательной капсулы в тело добычи попадает яд, вызывающий гибель мелких животных. Как правило, выстреливает сразу много стрекательных клеток. Затем гидра щупальцами подтягивает добычу ко рту и заглатывает. Стрекательные клетки служат гидре также и для защиты. Рыбы и водные насекомые не едят гидр, обжигающих врагов. Яд из капсул по своему действию на организм крупных животных напоминает яд крапивы.

Внутренний слой клеток - энтодерма гидры

Рисунок: строение внутреннего слоя клеток - энтодермы гидры

Внутренний слой клеток - энтодерм а. Клетки внутреннего слоя - энтодермы - имеют сократимые мускульные волоконца, но основная роль этих клеток - переваривание пищи. Они выделяют в кишечную полость пищеварительный сок, под влиянием которого добыча гидры размягчается и распадается на мелкие частицы. Часть клеток внутреннего слоя снабжена несколькими длинными жгутиками (как у жгутиковых простейших). Жгутики находятся в постоянном движении и подгребают частицы к клеткам. Клетки внутреннего слоя способны выпускать ложноножки (как у амебы) и захватывать ими пищу. Дальнейшее пищеварение происходит внутри клетки, в вакуолях (как у простейших). Непереваренные остатки пищи выбрасьшаются наружу через рот.
Особых органов дыхания у гидры нет, растворенный в воде кислород проникает в гидру через всю поверхность ее тела.

Регенерация гидры

В наружном слое тела гидры имеются также очень маленькие округлые клетки с крупными ядрами. Эти клетки называют промежуточными . Они играют в жизни гидры очень важную роль. При всяком повреждении тела промежуточные клетки, расположенные вблизи от ран, начинают усиленно расти. Из них образуются кожно-мускульные, нервные и другие клетки, и раненое место быстро зарастает.
Если разрезать гидру поперек, то на одной из ее половинок вырастают щупальца и появляется рот, а на другой возникает стебелек. Получаются две гидры.
Процесс восстановления утраченных или поврежденных частей тела называют регенерацией . У гидры способность к регенерации развита очень сильно.
Регенерация в той или иной степени характерна также для остальных животных и человека. Так, у дождевых червей возможна регенерация целого организма из их частей, у земноводных (лягушки, тритоны) могут восстанавливаться целые конечности, разные части глаза, хвост и внутренние органы. У человека при порезе восстанавливается кожа.

Размножение гидры

Бесполое размножение гидры почкованием

Рисунок: бесполое размножение гидры почкованием

Гидра размножается бесполым и половым способами. Летом на теле гидры появляется маленький бугорок — выпячивание стенки ее тела. Бугорок этот растет, вытягивается. На его конце появляются щупальца, а между ними прорывается рот. Так развивается молодая гидра, которая первое время остается соединенной с материнской при помощи стебелька. Внешне все это напоминает развитие побега растения из почки (отсюда и название этого явления - почкование ). Когда маленькая гидра подрастет, она отделяется от материнского организма и начинает жить самостоятельно.

Половое размножение гидры

К осени, с наступлением неблагоприятных условий, гидры гибнут, но перед этим в их теле развиваются половые клетки. Различают два вида половых клеток: яйцевые , или женские, и сперматозоиды , или мужские половые клетки. Сперматозоиды похожи на жгутиковых простейших. Они покидают тело гидры и плавают с помощью длинного жгутика.

Рисунок: половое размножение гидры

Яйцевая клетка гидры похожа на амебу, имеет ложноножки. Сперматозоид подплывает к гидре с яйцевой клеткой и проникает внутрь ее, и ядра обеих половых клеток сливаются. Происходит оплодотворение . После этого ложноножки втягиваются, клетка округляется, на ее поверхности выделяется толстая оболочка — образуется яйцо . В конце осени гидра погибает, а яйцо остается живым и попадает на дно. Весной оплодотворенное яйцо начинает делиться, образующиеся клетки располагаются в два слоя. Из них развивается маленькая гидра, которая с наступлением теплой погоды выходит наружу через разрыв оболочки яйца.
Таким образом, многоклеточное животное гидра в начале своей жизни состоит из одной клетки — яйца.

  • Тип: Cnidaria = Кишечнополостные, стрекающие
  • Подтип: Medusozoa = Медузопроизводящие
  • Класс: Hydrozoa Owen, 1843 = Гидрозои, гидроидные
  • Подкласс: Hydroidea = Гидроиды
  • Отряд: Hydrida = Гидры
  • Род: Hydra = Гидры

Род: Hydra = Гидры

Для гидр характерна примитивная диффузная нервная система, образованная в эктодерме нервными клетками в виде рассеянного нервного сплетения. В энтодерме имеются только отдельные нервные клетки, а всего у гидры около 5000 нейронов. Нервные сплетения тимеются на подошве, вокруг рта и на щупальцах. Есть данные, что у гидры имеется околоротовое нервное кольцо, аналогичное таковому зонтика у гидромедуз. Хотя у гидры нет четкого деления на чувствительные, вставочные и моторные нейроны, но тем не менее, имеются чувствительные и ганглиозные нервные клетки. Тела чувствительных клеток расположены поперек эпителиального пласта, они имеют неподвижный жгутик, окруженный воротничком из микроворсинок, который торчит во внешнюю среду и способен воспринимать раздражение. Отростки ганглиозных клеток расположены в основании эпителиально-мускульных и не выходят во внешнюю среду. Гидра - самое примитивное животное, в нервных клетках которого обнаружены чувствительные к свету белки опсины, которые у гидры и человека имеют общее происхождение. В целом, наличие нервной системы у гидры, позволяет ей осуществлять простые рефлексы. так, гидра реагирует на механическое раздражение, температуру, освещённость, наличие в воде определенных химических веществ и на ряд других факторов внешней среды.

Стрекательные клетки образуются из промежуточных только в области туловища. Стрекательных клеток у гидры около 55.000 и они наиболее многочисленные из всех клеточных типов. Каждая стрекательная клетка имеет стрекательную капсулу, которая ззаполнена ядовитым веществом, а внутрь капсулы ввёрнута стрекательная нить. На поверхности клетки ртся только чувствительный волосок, при раздражении которого тут же наружу выбрасывается нить и поражает жертву. Стрекательная клетка после выстреливания нити погибает, а на ее месте из промежуточных клеток образуются новые.

У гидры различают четыре типа стрекательных клеток. Первыми при охоте гидры выстреливают десмонемы (вольвенты): их спиральные стрекательные нити опутывают выросты тела жертвы и обеспечивают ее удержание. Когда жертва пытается рывками освободиться, от вызванной ими вибрации срабатывают стенотелы (пенетранты), имеющие более высокий порог раздражения. А шипы, имеющиеся у основания их стрекательных нитей, заякориваются в теле добычи, а через полую стрекательную нить в ее тело вводится яд. Большие глютинанты (их стрекательная нить имеет шипы, но не имеет, как и у вольвент, отверстия на вершине), видимо, в основном используются для защиты. Малые глютинанты используются только при передвижении гидры для прочного прикрепления щупальцами к субстрату. Их выстреливание блокируется экстрактами из тканей жертв гидры.

На щупальцах гидры находится самое большое количество стрекательных клеток, которые образуют здесь стрекательные батареи. В состав стрекательной батареи обычно входит одна крупная эпителиально-мускульная клетка, в которую погружены стрекательные клетки. В центре батареи находится крупная пенетранта, вокруг нее - более мелки вольвенты и глютинанты. Книдоциты соединены десмосомами с мускульными волокнами эпителиально-мускульной клетки.

Сверхвысокоскоростная киносъемка выстреливания пенетрант гидры показала, что весь процесс выстреливания занимает около 3 мс. Причем в начальной фазе выстреливания скорость достигает 2 м/c, а ускорение составляет около 40.000 g; что видимо, является одним из самых быстрых клеточных процессов из известных в природе. На ранней фазе выстреливании нематоцист скорость этого процесса составляет 9-18 м/с, а ускорение составляет от 1.000.000 до 5.000.000 g, что позволяет нематоцисте массой около 1 нг развивать на кончиках шипов (диаметр которых составляет около 15 нм) давление порядка 7 гПа, что сравнимо с давлением пули на мишень и позволяет пробивать достаточно толстую кутикулу жертв...

Из этой статьи вы узнаете все о строении пресноводной гидры, её образе жизни, питании, размножении.

Внешнее строение гидры

Полип (что означает «многоног») гидра - это крошечное полупрозрачное существо, обитающее в чистых прозрачных водах речек с медленным течением, озер, прудов. Это кишечнополостное животное ведет малоподвижный или прикрепленный образ жизни. Внешнее строение гидры пресноводной очень простое. Тело имеет практически правильную цилиндрическую форму. На одном из его концов расположен рот, который окружен венцом из множества длинных тонких щупалец (от пяти до двенадцати). На другом конце тела находится подошва, при помощи которой животное способно прикрепляться к различным предметам под водой. Длина тела пресноводной гидры составляет до 7 мм, а вот щупальца могут сильно растягиваться и достигать длины в несколько сантиметров.

Лучевая симметрия

Рассмотрим подробнее внешнее строение гидры. Таблица поможет запомнить и их назначение.

Телу гидры, как и многих других животных, ведущих прикрепленный образ жизни, присуща Что это такое? Если представить себе гидру и вдоль туловища провести воображаемую ось, то щупальца животного будут расходиться от оси во все стороны, подобно лучам солнца.

Строение тела гидры продиктовано ее образом жизни. Она прикрепляется к подводному предмету подошвой, свешивается вниз и начинает покачиваться, исследуя окружающее пространство с помощью щупалец. Животное охотится. Так как гидра подстерегает добычу, которая может появиться с любой стороны, то симметричное лучеобразное расположение щупалец оптимально.

Кишечная полость

Внутреннее строение гидры рассмотрим более подробно. Тело гидры похоже на продолговатый мешочек. Его стенки состоят из двух слоев клеток, между которыми расположено межклеточное вещество (мезоглея). Таким образом, внутри тела имеется кишечная (гастральная) полость. Пища проникает в неё через ротовое отверстие. Интересно то, что у гидры, которая в данный момент не ест, рот практически отсутствует. Клетки эктодермы смыкаются и срастаются так же, как на остальной поверхности тела. Поэтому каждый раз перед тем как поесть, гидре приходится заново прорывать рот.

Строение гидры пресноводной позволяет ей менять место своего жительства. На подошве животного имеется узкое отверстие - аборальная пора. Через неё из кишечной полости может выделяться жидкость и небольшой пузырек газа. С помощью этого механизма гидра способна открепиться от субстрата и всплыть к поверхности воды. Таким нехитрым способом, при помощи течений, она расселяется по водоему.

Эктодерма

Внутреннее строение гидры представлено эктодермой и эндодермой. Эктодермой называется образующих тело гидры. Если посмотреть на животное в микроскоп, то можно увидеть, что к эктодерме относится несколько разновидностей клеток: стрекательные, промежуточные и эпителиально-мускульные.

Самая многочисленная группа - кожно-мускульные клетки. Они соприкасаются между собой боковыми сторонами и образуют поверхность тела животного. Каждая такая клетка имеет основание - сократимое мускульное волоконце. Этот механизм обеспечивает возможность двигаться.

При сокращении всех волоконец тело животного сжимается, удлиняется, изгибается. А если сокращение произошло только на одной стороне тела, то гидра наклоняется. Благодаря такой работе клеток животное может передвигаться двумя способами - «кувырканием» и «шаганием».

Также в наружном слое расположены звездообразные нервные клетки. Они имеют длинные отростки, с помощью которых соприкасаются между собой, образуя единую сеть - нервное сплетение, оплетающее все тело гидры. Соединяются нервные клетки и с кожно-мускульными.

Между эпителиально-мускульными клетками расположены группы маленьких, округлой формы промежуточных клеток с крупными ядрами и небольшим количеством цитоплазмы. Если тело гидры повреждено, то промежуточные клетки начинают расти и делиться. Они способны превратиться в любой

Стрекательные клетки

Строение клеток гидры очень интересно, особого упоминания заслуживают стрекательные (крапивные) клетки, которыми усыпано все тело животного, особенно щупальца. имеют сложное строение. Кроме ядра и цитоплазмы в клетке расположена пузыревидная стрекательная камера, внутри которой находится свернутая в трубочку тончайшая стрекательная нить.

Из клетки выходит чувствительный волосок. Если добыча или враг касается этого волоска, то происходит резкое распрямление стрекательной нити, и она выбрасывается наружу. Острый кончик вонзается в тело жертвы, а по проходящему внутри нити каналу поступает яд, который способен убить мелкое животное.

Как правило, срабатывает множество стрекательных клеток. Гидра захватывает добычу щупальцами, притягивает ко рту и заглатывает. Яд, выделяемый стрекательными клетками, служит и для защиты. Более крупные хищники не трогают болезненно жалящих гидр. Яд гидры по своему действию напоминает яд крапивы.

Стрекательные клетки также можно подразделить на несколько типов. Одни нити впрыскивают яд, другие - обиваются вокруг жертвы, а третьи приклеиваются к ней. После срабатывания стрекательная клетка погибает, а из промежуточной образуется новая.

Энтодерма

Строение гидры подразумевает и наличие такой структуры, как внутренний слой клеток, энтодерма. Эти клетки также имеют мускульные сократительные волоконца. Основное их назначение - переваривание пищи. Клетки энтодермы выделяют пищеварительный сок прямо в кишечную полость. Под его влиянием добыча расщепляется на частицы. У некоторых клеток энтодермы есть длинные жгутики, постоянно находящиеся в движении. Их роль - подтягивать частицы еды к клеткам, которые, в свою очередь, выпускают ложноножки и захватывают пищу.

Пищеварение продолжается внутри клетки, поэтому называется внутриклеточным. Перерабатывается пища в вакуолях, а непереваренные остатки выбрасываются через ротовое отверстие. Дыхание и выделение происходит через всю поверхность тела. Рассмотрим ещё раз клеточное строение гидры. Таблица поможет наглядно сделать это.

Рефлексы

Строение гидры таково, что она способна чувствовать изменение температуры, химического состава воды, а также прикосновения и другие раздражители. Нервные клетки животного способны возбуждаться. Например, если дотронуться до него кончиком иглы, то сигнал от ощутивших прикосновение нервных клеток передастся остальным, а от нервных клеток - к эпителиально-мускульным. Кожно-мускульные клетки среагируют и сократятся, гидра сожмется в комок.

Такая реакция - яркий Это сложное явление, состоящее из последовательных этапов - восприятия раздражителя, передачи возбуждения и ответной реакции. Строение гидры очень простое, поэтому и рефлексы однообразны.

Регенерация

Клеточное строение гидры позволяет этому крохотному животному регенерировать. Как уже упоминалось выше, промежуточные клетки, расположенные на поверхности тела, могут трансформироваться в любой другой тип.

При любом повреждении организма промежуточные клетки начинают очень быстро делиться, расти и заменяют собой отсутствующие части. Рана зарастает. Регенеративные способности гидры столь высоки, что если разрезать её пополам, одна часть отрастит новые щупальца и рот, а другая - стебель и подошву.

Бесполое размножение

Размножаться гидра может как бесполым, так и половым способом. При благоприятных условиях в летнее время на теле животного появляется маленький бугорок, стенка выпячивается. Со временем бугорок растет, вытягивается. На его конце появляются щупальца, прорывается рот.

Таким образом появляется молоденькая гидра, соединенная с материнским организмом стебельком. Этот процесс называется почкованием, так как он похож на развитие нового побега у растений. Когда молодая гидра готова жить самостоятельно, она отпочковывается. Дочерний и материнский организмы прикрепляются к субстрату щупальцами и тянутся в разные стороны, пока не разделятся.

Половое размножение

Когда начинает холодать и создаются неблагоприятные условия, наступает черед полового размножения. Осенью у гидр из промежуточных начинают образовываться половые клетки, мужские и женские, то есть яйцевые клетки и сперматозоиды. Яйцевые клетки гидр похожи на амеб. Они крупные, усыпаны ложноножками. Сперматозоиды похожи на простейших жгутиковых, они способны плавать при помощи жгутика и покидают тело гидры.

После того как сперматозоид проникает в яйцевую клетку, их ядра сливаются и происходит оплодотворение. Ложноножки оплодотворенной яйцевой клетки втягиваются, она округляется, а оболочка становится толще. Образуется яйцо.

Все гидры осенью, с наступлением холодов, погибают. Материнский организм распадается, но яйцо остается живым и зимует. Весной оно начинает активно делиться, клетки располагаются в два слоя. С наступлением теплой погоды маленькая гидра прорывает оболочку яйца и начинает самостоятельную жизнь.